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Abstract

Regression models have been widely studied to investigate the prediction power of neuroimaging 

measures as biomarkers for inferring cognitive outcomes in the Alzheimer’s Disease (AD) study. 

Most of these models ignore the interrelated structures either within neuroimaging measures or 

between cognitive outcomes, and thus may have limited power to yield optimal solutions. To 

address this issue, we propose to employ a new sparse multi-task learning model called G-

SMuRFS, and demonstrate its effectiveness by examining the predictive power of detailed cortical 

thickness measures towards three types of cognitive scores in a large cohort. G-SMuRFS proposes 

a group-level ℓ2,1 norm strategy to group relevant features together in an anatomically meaningful 

manner and use this prior knowledge to guide the learning process. This approach also takes into 
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account the correlation among cognitive outcomes for building a more appropriate predictive 

model. Compared with traditional methods, G-SMuRFS not only demonstrates a superior 

performance, but also identifies a small set of surface markers that are biologically meaningful.
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1. Introduction

With the growing prevalence of Alzheimer’s disease (AD) worldwide, it is of great 

importance to identify valid biomarkers which can help with early detection and monitoring 

of therapeutic responses. Despite the two well-known hallmarks of AD: beta-amyloid 

plaques and neurofibrillary tangles, various cognitive tests remain the most common clinical 

routine for diagnosis. Compared with the binary disease status, AD-relevant cognitive 

outcomes may provide additional valuable information for studying the underlying disease 

mechanisms.

The release of the large-scale imaging and biomarker data of the Alzheimer ‘s disease 

Neuroimaging Initiative (ADNI) cohort has provided great opportunities for people to 

develop advanced computational methods for better understanding of the underlying 

neurodegenerative mechanism in relation to cognitive decline in AD. For example, 

regression analysis has become a widely used approach for the exploration of the 

relationship between imaging measures and cognitive outcomes. Using the ADNI data, 

many regression models have been employed to investigate the relationships between multi-

modal imaging measures and cognitive scores (Wagner, et al., 2005, Wan, et al., 2014, Wan, 

et al., 2012, Wang, et al., 2011). Most of the existing models have used summary statistics 

(e.g., average intensity) of each region of interest (ROI) as input features. Although voxel-

based image measures or vertex-based surface measures could provide more detailed 

morphometric information than ROI summary statistics, direct application of conventional 

regression models to these measures may be inadequate to yield biologically meaningful 

results. For example, standard linear or ridge regression model typically produces non-

sparse results that are not ideal for biomarker discovery. Conventional sparse models such as 

Lasso (Tibshirani, 1996) are likely to yield scattered patterns hard to interpret, due to the 

lacking of proper handling of the spatial correlation and prior anatomical knowledge in these 

models. To address this issue, we propose to employ a new sparse multi-task learning model 

called G-SMuRFS (Wang, et al., 2012) for identifying effective surface biomarkers that can 

predict cognitive outcomes. We demonstrate its effectiveness by examining the predictive 

power of detailed cortical thickness measures towards three types of cognitive scores 

(ADAS, MMSE and RAVLT) in the ADNI cohort.

Enormous efforts have been made to evaluate the power of sparse learning methods in the 

neuroimaging field, such as identifying structural (Avants, et al., 2010, Batmanghelich, et 

al., 2012, Sabuncu and Van Leemput, 2012, Wan, et al., 2014, Wan, et al., 2012, Wang, et 

al., 2011) or functional (Grosenick, et al., 2013, Jenatton, et al., 2012, Michel, et al., 2011, 
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Varoquaux, et al., 2012) imaging biomarkers associated with other imaging modality 

(Avants, et al., 2010), cognitive scores (Jenatton, et al., 2012, Varoquaux, et al., 2012, Wan, 

et al., 2014, Wan, et al., 2012, Wang, et al., 2011), behavior (Grosenick, et al., 2013, Michel, 

et al., 2011), as well as diagnostic conditions (Batmanghelich, et al., 2012, Sabuncu and Van 

Leemput, 2012). However, using detailed cortical surface measures to predict cognitive 

outcomes is an under-explored area. In this study, we attempt to explore a novel application 

of G-SMuRFS to the identification of detailed surface-based cortical biomarkers that are 

relevant to cognitive outcomes. G-SMuRFS proposes a group-level ℓ2,1 norm strategy to 

achieve three goals: (1) group relevant surface features together in an anatomically 

meaningful manner (i.e., ROI information is incorporated) and use this prior knowledge to 

guide the learning process (i.e., spatial correlation within each ROI is addressed); (2) take 

into account the correlation among cognitive outcomes for building a more appropriate 

predictive model (i.e., multiple correlated cognitive scores are predicted together); and (3) 

optimize the selection of cognition-relevant surface biomarkers while maintaining high 

prediction accuracy. The high dimensionality of the vertex-based cortical surface data (e.g., 

327,684 vertices in our study) introduces major computational challenges. To address this 

issue, we introduce a down-sampling technique to merge neighboring vertices into small 

surface patches to reduce the computational cost while preserving detailed surface 

information. Our overarching goal is to examine and validate the predictive power of these 

detailed cortical thickness measures towards cognitive outcomes while considering the 

group structures defined by anatomically meaningful ROIs. The results may provide 

important information about potential surrogate biomarkers for early detection and/or 

therapeutic trials in AD.

2. Materials and Methods

2.1 Neuroimaging and Cognition Data

All the data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (Weiner, et al., 2010). 

One goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 

information, we refer interested readers to www.adni-info.org.

We downloaded the baseline 1.5 T magnetic resonance imaging (MRI) scans, demographic 

information, and baseline diagnosis for all the ADNI Phase 1 (ADNI-1) participants. We 

also downloaded three types of baseline cognitive scores: Alzheimer’s Disease Assessment 

Scale (ADAS), Mini-Mental State Examination (MMSE), and Rey Auditory Verbal 

Learning Test (RAVLT). For each participant, FreeSurfer V4, an automatic brain 

segmentation and cortical parcellation tool, was applied to automatically label cortical and 

subcortical tissue classes (Dale, et al., 1999, Fischl, et al., 1999) and to extract surface-based 

thickness measures. We focused our study on examining the thickness measures from 

surface locations labeled with any of the 34 FreeSurfer cortical ROIs (shown in Table 1) in 
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both hemispheres. The measures from surface locations labeled with “unknown” were 

excluded in this study.

Following a previous imaging genetics study (Shen, et al., 2010), in this work, we 

concentrated our analyses on the Caucasian subjects determined by population stratification 

analysis using the ADNI genetics data (Saykin, et al., 2010). 718 out of 745 Caucasian 

participants with no missing MRI morphometric and the cognitive outcome information 

were included in the study. The 718 participants were categorized by three baseline 

diagnostic groups: healthy control (HC, n=197), MCI (n=349), and AD (n=172). 

Demographics information of these subjects can be found in Table 2. All the imaging and 

cognitive outcome measurements were adjusted for age, gender, education and handedness, 

while intracranial volume was applied as an extra covariate for imaging measurements.

2.2 G-SMuRFS

Throughout this section, we write matrices as boldface uppercase letters and vectors as 

boldface lowercase letters. Given a matrix M = (mi,j), its i-th row and j-th column are 

denoted as mi and mj respectively. The Frobenius norm and ℓ2,1-norm (also called as ℓ1,2-

norm) of a matrix are defined as  and 

, respectively.

This study is centered on the multi-task learning paradigm, where multimodal imaging 

measures are used to predict one or more cognitive outcomes. Let {x1, x2, …, xn} ⊆ ℜd be 

imaging measures and {y1, y2, …, yn} ⊆ ℜc cognitive outcomes, where n is the number of 

samples, d is the number of predictors (feature dimensionality) and c is the number of 

response variables (tasks). Let X = [x1, x2, …, xn] and Y = [y1, y2, …, yn].

To investigate the correlation between imaging measures and cognitive outcomes, linear and 

ridge regression models are two standard methods. While linear regression (least square) 

may yield unstable results for correlated predictors, ridge regression have one more 

regularization term, the Frobenius norm of trained weights, to successfully solve the 

problem and ascertain the numerical stability simultaneously (Eq. (1)).

(1)

where the entry wij of weight matrix W measures the relative importance of the i-th predictor 

in predicting the j-th response, and γ > 0 is a tradeoff parameter.

Regression weights brought by Frobenius norm are typically non-sparse, which makes the 

results hard to interpret and unsuitable for biomarker discovery. To produce sparse 

solutions, the following traditional Lasso model (Tibshirani, 1996) can be used:
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However, this multi-task Lasso model is equivalent to applying Lasso to each outcome 

variable independently, and ignores the correlation among the outcome variables. As a 

result, although the outcome variables are correlated, the features selected by the above 

Lasso model could be relevant to some outcomes (i.e., regression weights ≠ 0) but not to 

others (i.e., regression weights = 0).

ℓ2,1-norm (Eq. (2)), motivated by ridge and Lasso, is proposed as follows.

(2)

where  (see also Fig. 1). ℓ2,1-norm is one of the advanced techniques 

that addresses both the outcome correlation and sparsity issues, by enforcing an ℓ2-norm 

across the tasks and an ℓ1-norm across the features. While the ℓ2-norm ascertains the 

similarity pattern across the tasks, the ℓ1 norm ascertains the sparsity across the features.

In all the above methods, imaging features were all treated separately, where the underlying 

brain structures were not taken into account. In many cases, different brain structures may 

be responsible for different brain functions. Therefore it would be much more meaningful to 

include the structural information in the regression procedure. G-SMuRFS (Group-Sparse 

Multi-task Regression and Feature Selection) (Wang, et al., 2012), a newly proposed 

regression model derived from the ℓ2,1 norm, takes into account the group information in the 

regression procedure and has yielded promising results in a previous imaging genetics study 

(Wang, et al., 2012). In this work, we apply this algorithm to group all the vertices within 

each ROI together and incorporate the anatomical boundary information into the regression 

procedure. As illustrated in Fig. 1, this method can be applied to address this issue by 

grouping cortical vertices using ROI boundary information (i.e., group ℓ2,1-norm, or G2,1-

norm), where cortical measures from the same ROI tend to be selected together as joint 

predictors and yield an anatomically meaningful biomarker discovery result. On the other 

hand, the ℓ2,1-norm can help select imaging features that can predict all or most of the 

cognitive outcomes. As a result, the learned regression model and the selected cortical 

biomarkers should be more biologically meaningful and more informative.

Mainly motivated by sparse learning, such as Lasso (Tibshirani, 1996) and group Lasso 

(Yuan and Lin, 2006), the new regularization term was applied in G-SMuRFS to consider 

both the group sparsity through the G2,1-norm and the individual biomarker sparsity for joint 

learning via an ℓ2,1-norm regularization (Puniyani, et al., 2010). In the objective function Eq. 

(3), while the second term couples all the regression coefficients of a group of features 

across all the c tasks together, the third term penalizes all c regression coefficient of each 

individual feature as whole to select features across multiple learning tasks.

(3)
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where  is the G2,1-norm, and  is the 

ℓ2,1-norm (see also Fig. 1). The solution of the objective function Eq. (3) can be obtained 

through an iterative optimization procedure. By setting the derivative with respect to W to 

zero, W can be solved as in Eq. (4).

(4)

where D1 is a block diagonal matrix with the k-th diagonal block as , Ik is an 

identity matrix with size of mk, mk is the total feature numbers included in group k, D2 is a 

diagonal matrix with the i-th diagonal element as . Detailed optimization procedure 

and algorithm can be found in (Wang, et al., 2012).

Generally, the advantage of this model is three-fold: (1) It addresses the highly correlated 

nature of the cortical vertices within each surface ROI. (2) It takes into account the 

correlation of multiple scores of the same cognitive function test. (3) It achieves both the 

global biomarker sparsity as well as the ROI group sparsity.

3. Experimental Results and Discussion

3.1 Experimental Setting

In this study, we examined all the cortical thickness measures across 34 pairs of bilateral 

cortical surface ROIs (68 ROIs in total) (Table 1) regarding their power for predicting the 

ADAS, MMSE and RAVLT cognitive scores. Our cortical surface data, generated by 

FreeSurfer, contains 327,684 vertices per surface. For the efficiency purpose, we completed 

a preprocessing step to down-sample 327,684 vertex-based thickness measures to 3,133 

surface-patch-based measures using the following approach. First, we randomly selected 

cortical surface data from 50 HC participants. Second, for each ROI (say, with m vertices), 

we performed the k-mean clustering using this pre-selected HC subset to partition the ROI 

into roughly m/100 surface patches, where each patch was formed by a set of neighboring 

vertices with similar thickness. As a result, 3,133 patches were defined on the cortical 

surface. Third, excluding 320 patches from the region labeled as “unknown”, we got 2813 

patches from the ROIs shown in Table 1. Finally, we applied this patch scheme to the entire 

data set. The cortical thickness measures of all vertices within one patch were averaged to 

represent the patch-level thickness measure. These 2813 patch-level measures were used as 

predictors in our regression analysis.

The response variables in the multivariate multiple regression analysis included the 

following five cognitive scores: ADAS-cog total score (ADAS), MMSE score (MMSE), 

RAVLT total score (TOTAL), RAVLT 30 minutes delay score (T30), and RAVLT 

recognition score (RECOG). To provide an unbiased estimate of the prediction performance 

of each method tested in the experiments, we employed five-fold cross-validation, where 

each fold contained a similar portion of AD, MCI and HC participants. We calculated the 

following two metrics to compare the prediction performance across different methods: (1) 

Root Mean Square Error (RMSE) between the actual and predicted scores of all the test 
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subjects; and (2) Pearson Correlation Coefficient (CC) between the actual and predicted 

scores of all the test subjects.

In our experiments, we compared G-SMuRFS with four competing multivariate regression 

methods: (1) ℓ2,1-norm, (2) Partial Least Square (PLS), (3) ridge, and (4) linear regression. 

Parameters for these models were optimally tuned using a nested cross-validation strategy 

on the training data, with search grid in the range of [5×10−3, 5×103]. For these regression 

analyses, the input data included 2,813 surface patch-level thickness measures as predictors 

and cognitive scores as response variables. We also performed univariate surface-based 

analysis using SurfStat (Chung, et al., 2010) to cross check whether univariate and 

multivariate methods could yield similar patterns.

3.2 Results and Discussion

Prediction performance, measured by RMSE and CC, of the cortical thickness measurement 

under five different regression models is shown in Table 3, where the average (avg) and 

standard deviation (std) of performance measures across five cross-validation trials are 

shown as “avg±std” for each experiment. The prediction performances using those features 

selected by G-SMuRFS and ℓ2,1-norm are higher (i.e., lower RMSE and higher CC) than 

those of linear, ridge and PLS regression models. In particular, G-SMuRFS demonstrates 

clear performance improvement over PLS and linear regression on predicting all five scores, 

and over ridge regression on predicting MMSE and RAVLT-RECOG. Prediction 

performances of G-SMuRFS and ℓ2,1-norm are similar. Fig. 2 shows scatter plots of actual 

and predicted (by G-SMuRFS) cognitive scores.

Fig. 3 shows the histogram of regression weights associated with all the cortical measures 

for each method, in an example cross-validation trial, and the cortical maps of these 

regression weights are shown in Fig. 4(a–e). Note that all the PLS weights are very small 

and thus a different color scale is used. From these plots, we observe the following: (1) PLS, 

ridge and linear regression models yielded non-sparse results where most surface measures 

shared relatively similar impact on the prediction performance; and (2) G-SMuRFS and ℓ2,1-

norm presented a much better sparsity across all the cortical measures, where a small portion 

of the cortical surface was identified to be relevant to the outcome.

Besides the sparsity at the cortical patch level, we also examined the group sparsity of all 

five models at the ROI level. In Fig. 5, ROI level sparsity is demonstrated through the 

histogram of “high impact” (i.e., top 50) cortical markers against each of the 34 pairs of 

bilateral ROIs for (a) G-SMuRFS, (b) ℓ2,1-norm, (c) PLS, (d) ridge regression, and (e) linear 

regression respectively. Each vertical bar here indicates an ROI in the brain. While the top 

50 biomarkers identified by G-SMuRFS are associated with a small number of ROIs, the 

same number of high impact biomarkers identified through ℓ2,1-norm, ridge regression, and 

linear regression are scattered across a large portion of cortical surface regions, making the 

result hard to interpret. G-SMuRFS yielded sparse patterns at the ROI level that have the 

potential for identifying relevant biomarkers. Although PLS also yielded sparse patterns, the 

predictive power of its top 50 markers (RMSE=1.045, CC=0.377) is lower than that of G-

SMuRFS’s (RMSE=0.938, CC=0.46).
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Fig. 6 shows example G-SMuRFS regression weights that were averaged over the five 

cross-validation trials and were then mapped back onto the cortical surface. Our multi-task 

regression experiment was performed to identify thickness measures for jointly predicting 

ADAS, MMSE, RAVLT TOTAL, RAVLT RECOG, and RAVLT T30 scores. The weight 

maps for ADAS (Fig. 6a), MMSE (Fig. 6b), TOTAL (Fig. 6c), RECOG (Fig. 6d), and T30 

(not shown) are very similar to one another except that the ADAS pattern is in the 

opposition direction. Thickness measures from left and right entorihnal cortex, left middle 

temporal gyri, left inferior parietal gyri, right medial orbitofrontal gyri, and right precunes 

are positively correlated to the MMSE and RAVLT scores, and negatively correlated to 

ADAS. The measures from left fusiform are correlated to ADAS, MMSE, TOTAL and T30, 

and the measures from right middle temporal gyri are correlated to ADAS, MMSE, and 

RECOG. These patterns identified by our multivariate G-SMuRFS regression analysis 

match well with the weight map patterns computed by the univariate SurfStat analysis 

shown in Fig. 7.

The ROIs identified in this work are either related to AD or in accordance with findings in 

similar prior studies. For example, entorihnal cortex (part of medial temporal cortex) and 

precuneus are among the cortical signature of AD studied in (Bakkour, et al., 2009, 

Dickerson, et al., 2009). Wan, et al. (2012), Wan, et al. (2014) and Wang, et al. (2011) 

performed similar regression studies for predicting cognitive outcomes using MRI measures. 

However, they examined only summary statistics (volume, thickness, or gray matter density) 

of both cortical and subcortical ROIs instead of detailed cortical thickness measures. The 

mean thickness of entorihnal cortex was found to be correlated with ADAS (Wan, et al., 

2014), MMSE (Wan, et al., 2014) and RAVLT (Wan, et al., 2014, Wang, et al., 2011) 

scores. The mean thickness of inferior parietal gyri was found to be correlated with ADAS 

(Wan, et al., 2014) and RAVLT (Wang, et al., 2011) scores. The mean thickness of middle 

temporal gyri was found to be correlated with RAVLT scores (Wan, et al., 2012). Partly due 

to the detailed cortical analysis, this work identified some additional ROIs associated with 

the studied cognitive scores. Replication of these results in independent samples will remain 

of critical importance for confirmation.

The computational cost of G-SMuRFS was similar to that of the ℓ2,1-norm model but more 

expensive than linear, ridge and PLS regressions. We implemented all the regression models 

using Matlab. For one cross-validation trial in our experiments, G-SMuRFS and ℓ2,1-norm 

took 75–77 seconds while linear regression took 48 seconds, and ridge and PLS took < 2 

seconds. One interesting future direction is to develop more efficient implementation of G-

SMuRFS and make it applicable to the analysis of larger scale data sets.

To sum up, our empirical results are very encouraging and have demonstrated the promise of 

the G-SMuRFS method in the application of relating cortical morphology to cognitive 

outcomes: (1) G-SMuRFS regression model outperformed linear, ridge and PLS regression 

models, and performed similarly to the multi-task ℓ2,1-norm model in terms of overall 

RMSE and CC (Table 3). (2) The biomarkers identified by the G-SMuRFS method were 

sparser at the patch level than linear regression and ridge regression, and yielded a more 

stable performance for predicting cognitive scores. (3) Both G-SMuRFS and ℓ2,1 methods 

yielded sparse results at the vertex level (Fig. 3 and Fig. 4), however the G-SMuRFS model 
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presented a sparser pattern at the ROI level (Fig. 5) than the ℓ2,1-norm model. Taking into 

account the spatial information makes the best use of the detailed surface information, yet 

leading to a clustered group level result instead, which is more visible and interpretable.

4. Conclusions

We have investigated the power of detailed cortical thickness measurements for predicting 

ADAS, MMSE and RAVLT cognitive scores using the data from the ADNI cohort. We 

have proposed to employ a newly developed sparse multi-task learning algorithm called G-

SMuRFS, and have observed the following strengths of this approach that could greatly 

improve the prediction performance: (1) seamless integration of anatomical knowledge in 

the learning process by coupling cortical measures from the same ROI together; (2) sparsity 

at both patch level and ROI level; and (3) multitask learning scheme for addressing 

correlation among response variables.

Compared to Linear, ridge, PLS, or ℓ2,1-norm regression, combining the group ℓ2,1-norm in 

the regularization term has not only helped select the potential biomarkers in a few ROIs, 

but also improved overall predictive power. Its application to multi-modal imaging data 

would be promising future directions for biomarker discovery and better mechanistic 

understanding in AD research. Exploration of other imaging modalities as well as the 

combination of multiple modalities warrants further investigation. Further effort may be 

made to include more complicated prior structure, like multiple layer groups or networks, to 

guide the learning procedure. Another possible future topic could be to investigate whether 

nonlinear models can help improve the prediction rates as well as derive biologically 

meaningful results.
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Highlights

• We examine the predictive power of cortical measures towards cognitive scores

• We consider the group structures defined by anatomically meaningful ROIs

• We apply G-SMuRFS to predict cognitive scores using cortical thickness 

measures

• G-SMuRFS demonstrates a superior prediction performance

• G-SMuRFS identifies a small set of biologically meaningful surface markers
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Figure 1. 
Illustration of the G-SMuRFS method. Two regularization terms, group ℓ2,1-norm (||W||G2,1) 

and ℓ2,1-norm (||W||2,1), are integrated to group surface vertices by ROIs and to jointly select 

prominent vertices across all cognitive scores.
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Figure 2. 
Scatter plots of actual (on y-axis) and predicted (by G-SMuRFS, on x-axis) cognitive scores. 

Note that the actual cognitive scores are pre-adjusted and thus may have negative values. 

The testing samples across five cross-validation trials were pulled together to calculate the 

correlation coefficients (CC) and the p values. Thus, the CCs shown here are slightly 

different from the CCs shown in Table 3 that were calculated separately for each cross-

validation trial.
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Figure 3. 
Histogram of regression weights of all cortical measures for predicting the RAVLT TOTAL 

score in an example cross-validation trial. Shown from left to right are the results of (a) G-

SMuRFS, (b) ℓ2,1-norm, (c) PLS, (d) ridge regression, and (e) linear regression. The top row 

shows the complete histograms, and the bottom row shows the zoom in view of the partial 

histograms for y∈[0, 100].
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Figure 4. 
Cortical map of regression weights for predicting the RAVLT TOTAL score in an example 

cross-validation trial using five different models: (a) G-SMuRFS, (b) ℓ2,1-norm, (c) PLS, (d) 

ridge regression, and (e) linear regression. The red color indicates regions where the 

thickness is positively correlated with the RAVLT TOTAL score, and the blue color 

indicates regions where the thickness is negatively correlated with the score. Shown in (f) 

are 34 pairs of color-coded bilateral cortical ROIs.
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Figure 5. 
Number of “high impact” (i.e., top 50) cortical markers for predicting the RAVLT TOTAL 

score, in an example cross-validation trial, is plotted against the corresponding ROI (34 

ROIs in total). The x axis shows the ROI IDs (see Table 1 for the corresponding ROI 

names). The y axis shows the number of top markers in the left hemisphere ROI (top row) or 

the right hemisphere ROI (bottom row). Shown from left to right are the results of (a) G-

SMuRFS, (b) ℓ2,1-norm, (c) PLS, (d) ridge regression, and (e) linear regression. The cross-

validation performance using these top 50 markers, measured by root mean square error 

(RMSE) and correlation coefficient (CC) between the actual and predicted RAVLT TOTAL 

scores of all the test subjects, is shown in each panel.

Yan et al. Page 17

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
Example G-SMuRFS regression weights are color-coded and mapped onto the cortical 

surface. The red color indicates regions where the thickness is positively correlated with the 

corresponding cognitive score ((a) ADAS, (b) MMSE, (c) RAVLT-TOTAL, or (d) RAVLT-

RECOG), and the blue color indicates regions where the thickness is negatively correlated 

with the score.

Yan et al. Page 18

Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. 
Example SurfStat t-statistic map: t-statistics are color-coded and mapped onto the cortical 

surface.
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Table 1

Thickness measures at surface locations from the following 34 pairs of bilateral FreeSurfer cortical regions 

(68 ROIs in total) were analyzed in this study.

ID ROI Name

1 banks of the superior temporal sulcus

2 caudal anterior cingulate

3 caudal middle frontal gyri

4 corpus collosum

5 cuneus

6 entorhinal cortex

7 fusiform gyri

8 inferior parietal gyri

9 inferior temporal gyri

10 isthmus cingulate

11 lateral occipital gyri

12 lateral orbitofrontal gyri

13 lingual gyri

14 medial orbitofrontal

15 middle temporal gyri

16 parahippocampal gyri

17 paracentral lobule

18 pars opercularis

19 pars orbitalis

20 pars triangularis

21 pericalcarine gyri

22 postcentral gyri

23 posterior cingulate

24 precentral gyri

25 precuneus

26 rostral anterior cingulate

27 rostral middle frontal gyri

28 superior frontal gyri

29 superior parietal gyri

30 superior temporal gyri

31 supramarginal gyri

32 frontal pole

33 temporal pole

34 transverse temporal pole
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Table 2

Participant characteristics.

Category HC MCI AD

Number of Subjects 197 349 172

Gender (M/F) 107/90 224/125 94/78

Handedness (R/L) 183/14 316/33 160/12

Baseline Age (years, mean±SD) 76.2±5.0 75±7.3 75.6±7.5

Education (years, mean±SD) 16.2±2.7 15.7±3 14.9±3.1
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